Intrbiz

Protecting Your Customers
With PostgreSQL

Chris Ellis - @intrbiz

http://intrbiz.com

Intrbiz
Hello!

e I'm Chris
o IT jack of all trades

e Been using PostgreSQL for about 12 years
e Very much into Open Source
o Start Bergamot Monitoring - open distributed monitoring

e Been working on large smart energy analytics for the last few years

o Strange mix of OLTP and OLAP
o Quite a bit of customer data, hence this talk

http://intrbiz.com

Intrbiz
Setting The Scene

e This talk has come from the various efforts me and my team have
implemented to protect our customers data, | wanted to share my learnings

e This talk is targeted at people who are building application with PostgreSQL,
rather than running third party application on top of PostgreSQL

e Please don't see this talk as a: 'we should be doing this’. You need to decide
for yourself which approaches work the best for you in your situation.

e |'d prefer this talk to be a discussion and not a lecture, please feel free to ask
questions :)

http://intrbiz.com

InErbiz
Why Bother With This Security Stuff?

e Large scale data loss is increasingly in the headlines
o Reputational damage cost you
o Do you want to be the next: Talk Talk, Yahoo, Equifax?
e Legal
o Obligations under various data protection legislation
o GDPR comes into force next year, could be fined 5% of revenue!
e Professional
o You don’t want data loss to follow you around, feels nice to do a good job

e Compliance
o In alarge corp, you don’'t want the Info. Sec. team down your throats!
o You may have to comply with external regulations, eg: PCI DSS

http://intrbiz.com

Intrbiz
But Heard It All Before

e We have a firewall
o Just protecting your perimeter - fail!

e We won't get hacked, no one cares about us
o Hackers certainly don’t

e Not a priority now
o It'll be a priority when it is too late

e Security is expensive
o Companies spend about 1/20th of development cost on security

http://intrbiz.com

INnErbiz
Security Is An Onion, Not A Balloon

e You will get hacked, plan on that assumption, not the other way around
e Defense In Depth

o You can't just protect the perimeter, threats aren’t just external

o An attacker should need to exploit multiple layers
e Failsafe

o Each layer should failsafe, contain an attack rather than facilitate it

o Least privilege: | want the least amount of permission to acheive what | need to do
e Challenge

o Security is the responsibility of everyone: devs, ops, dbas, business. Not just Info. Sec.
e Detect, Deceive

o Would you know if you've been breached, attacks are often slow and unnoticed
o All Warfare Is Based On Deception

http://intrbiz.com

Intrbiz
Foundations

http://intrbiz.com

InErbiz
Foundations: Standing On The Shoulders Of Giants

e Crunchy Data have done awesome work on securing a PostgreSQL install
o It's pointless me repeating it
o Get it here: http://info.crunchydata.com/blog/postgres-stig-disa-security-guide
o Readit
o Implement what is sensible for your deployment
e They've also gone great work on pg_audit
o Again pointless me repeating it

http://intrbiz.com

http://info.crunchydata.com/blog/postgres-stig-disa-security-guide

InErbiz
Foundations: TLSing Connections

e Running in a cloud environment, it's hard to keep tabs on where traffic will
flow

e Running without TLS between our application and database wasn’t an option
o Damn info. sec.

e But Debian / Ubuntu has TLS enabled by default

o Well, yes and no

o TLS without a chain to trust is pretty pointless
e Doing TLS properly

o Get a real certificate signed by a real CA

o Setup your own CA
m Easily done via OpenSSL

http://intrbiz.com

InErbiz
Foundations: Encrypted Storage?

e In some environments you don’t have control of the storage layer

o How can you prevent someone copying your whole database
o How can you demonstrate the destruction of data
m Easy to prove you shredded those $40k worth of SSDs

e You might need to run your whole database on an encrypted volume

o On Linux this can be done via dm-crypt
o Encryption has some overhead, every disk read and write requires additional CPU time
m Thankfully modern CPUs have dedicated instructions to improve AES performance
o You might be able to get away with encrypting certain table spaces
m Be careful of temp files, temp tables, etc
o There are schema level options, with lots of tradeoffs, out of scope for this talk

http://intrbiz.com

Intrbiz
Foundations: Where Is Your Schema?

e You should manage your database schema as you would code

o Putitin source control
Make it visible, reviewable, manageable
One SQL file per entity
Wrap it in a simple build process: a little bash script, maybe make
You can easily do single shot migration scripts using a function, no need for fancy tools
Use transactions: make your deployment atomic
e Don't

o Only keep your schema in a database

m Then trying to do pg_dump | psql to patch other dbs

o Store it as a set of patch scripts
m Where deploying consists of applying script after script in order

http://intrbiz.com

O O O O O

InErbiz
Building Blocks

http://intrbiz.com

InErbiz
Building Blocks: Roles, The More The Better

e Roles are things which can be given permission over your database
o Roles could be people, teams, or more abstract
o Roles in PostgreSQL are super flexible and super powerful for controlling access
o You can never have enough roles
m Define roles for each logical group of functionality in your database
m Aggregate your fine grained roles into higher level roles to simplify maintenance
o Got multiple applications using your database, each application should have its own role
o Does your application role have the least privilege it needs?

e Don't:
o Your application role is a super user - just no!
o Your application role is the database owner
o Your developers are super users - sure, they occasionally need it, but not by default

http://intrbiz.com

InErbiz
Building Blocks: Grant, Revoke

e Once you've got roles defined, you want to control what they can do
o Revoke all permissions from public
m No point in controlling what roles can do, if public can do everything
o Grant roles only the access they need
m Define and manage your roles and grants in your schema repository
m Only grant usage to schemas that the role needs
m Only grant the specific permissions that a role needs over a table
m Start with the minimum, deploying schema updates is easy, databases are in flux
o If your tables contain sensitive data, you might want to grant access at the column level
m This will break: SELECT * FROM ...

http://intrbiz.com

InErbiz
Building Blocks: Row Level Security

e Row Level Security is very powerful, however didn’t suit our use case
o Hard to define a separate user for each customer in our system
m Don'’t really want to deal with PostgreSQL with 11M users
m Had | found out about set_user before, might have been more possible
e Row Level Security still great for enforcing least privilege
o You can filter certain rows from certain applications
o You can filter certain rows for types of users in your application

http://intrbiz.com

Intrbiz
Functional Interfaces

http://intrbiz.com

Intrbiz
Functional Interfaces: What?

e Your database provides an API for your application via functions, rather than

directly querying entities
o SELECT * FROM get_user_by username(‘chris’);

e Gives your database developers flexibility, they can change entities without
impacting the application, reduced coupling

e Provides a strict, enforced and controllable interface for what your application
can do with your database. Just like we do at an application API level

e PostgreSQL has many features to provide rich APls, EG: JSON in and out

e At first it will take more development effort, depends on your team make up, if
you don’t have dedicated database developers it won’t be ideal

http://intrbiz.com

Intrbiz
Functional Interfaces: Secure?

e Let’s consider what happens if your application is vulnerable to SQL injection
o An attacker provides *‘; SELECT * FROM customer; --" as an input
o The attacker has then managed execute: "SELECT * FROM customer
m You've just exposed lots of customer data
e If we go via a function instead
o An attacker provides *‘; SELECT * FROM customer; --" as an input
o Sadly still the attacker has managed to execute "SELECT * FROM customer’
m You've still exposed lots of customer data

e Using a functional interface will prevent certain attacks

e But it won’t mitigate SQL injection attacks
o However....

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer

MAKE ME A SANDWICH,
WHAT? MAKE
IT YOURSELF,
SUDO MAKE ME /
A SANDWICH.
OKAY.

|
L

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer

e Security definer means your function executes with the permissions of its
owner rather than the permissions of the role executing it

e This provides privilege separation
o Just like sudo
o We provide a tight, reviewed and secure interface to lower privileges roles

e Now | can grant the application role only permission to execute the function

e The role which owns the function can be granted access to the underlying
tables

e \We fail safe, the application cannot directly access data, it can only do what
the function allows it

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer Example

CREATE ROLE talk_api_function WITH
NOSUPERUSER NOCREATEDB NOCREATEROLE NOLOGIN NOREPLICATION

NOBYPASSRLS

CREATE ROLE talk_api WITH
NOSUPERUSER NOCREATEDB NOCREATEROLE NOLOGIN NOREPLICATION

NOBYPASSRLS
CREATE USER app_talk WITH

LOGIN NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION
GRANT talk_api TO app_talk

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer Example

CREATE SCHEMA api AUTHORIZATION cellis
REVOKE ALL PRIVILEGES ON SCHEMA api FROM public
GRANT USAGE ON SCHEMA api TO talk_api

CREATE SCHEMA customer AUTHORIZATION cellis

REVOKE ALL PRIVILEGES ON SCHEMA customer FROM public
GRANT USAGE ON SCHEMA customer TO talk_api_function

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer Example

CREATE TABLE customer.customer
id UUID NOT NULL PRIMARY KEY
full name TEXT
preferred_name TEXT
emall address TEXT
mobile number TEXT
postal_address TEXT
postcode TEXT

ALTER TABLE customer.customer OWNER TO cellis
REVOKE ALL PRIVILEGES ON TABLE customer.customer FROM public
GRANT SELECT ON TABLE customer.customer TO talk_api_function

http://intrbiz.com

InErbiz
Functional Interfaces: Security Definer Example

CREATE OR REPLACE FUNCTION api.get_customer(p_id UUID)
RETURNS SETOF customer.customer
LANGUAGE plpgsql SECURITY DEFINER AS $%
BEGIN
RETURN QUERY SELECT * FROM customer.customer WHERE id = p_1id;
END;
$$;
ALTER FUNCTION api.get_customer(UUID) OWNER TO talk_api_function;

REVOKE ALL PRIVILEGES ON
FUNCTION api.get_customer(UUID) FROM public;

GRANT EXECUTE ON FUNCTION api.get_customer(UUID) TO talk_api;

http://intrbiz.com

Intrbiz
Functional Interfaces: Secure?

e Let's go back to our SQL injection vulnerable application
o An attacker provides *‘; SELECT * FROM customer; --" as an input
The function call is still bypassed, by the injection
However the application does not have permission to directly access the table
Instead of exposing customer data the attacker gets an error message
The data layer has failed safe and contained the attack, rather than facilitated it

e Let's think about a bigger application vulnerability, imagine the attacker has
gained total control of your application, how might they extract your customer

data

o The functional interface restricts them to accessing 1 record at a time
o The attacker needs to guess your identifiers
m Don’t expose sequential identifiers publicly

http://intrbiz.com

o O O O

Intrbiz
Functional Interfaces: Caveats

e If your security definer functions are generating dynamic SQL, be careful

o Just like with sudo, if you allow a user to run a user defined command as root, your owned
e Make sure you use:

o ‘quote_ident’

o ‘quote_literal’

o "EXECUTE ... USING ...

http://intrbiz.com

InErbiz
Functional Interfaces: PL/Proxy

e If you've gone down the functional interface road, then you can leverage
extensions such as PL/Proxy

e PL/Proxy allows you to define functions which proxy to a remote PostgreSQL
database, this is great for sharding and scaling your database

e PL/Proxy also allows you to place another layer between your application and

your actual data
o The application can only connect to the proxy database, which is stateless, contains no data
o The proxy database then proxies function calls to the backend database
o To extract data, an attacker now needs to exploit multiple layers

e For sure, this requires more development effort, you now need to write two
function definitions for everything

http://intrbiz.com

Intrbiz
Masking Data: Views

e You can easily use views to hide portions of data
o Or apply one way transformations (eg: hashing)
o Revoke privileges from the underlying table
o Grant permissions to the view
e \When using a view to mask data, you need to be careful

o The view needs to be marked security definer
o Functions used by the view should be marked leakproof

http://intrbiz.com

InErbiz
Detecting And Deceiving: pg_decoy Example

CREATE OR REPLACE VIEW api.customer
WITH
AS

SELECT id, full_name, preferred_name, md5(email_address) AS
emall address, md5(mobile number) AS mobile_ number, NULL AS
postal_address, postcode

FROM customer.customer

ALTER TABLE api.customer OWNER TO cellis

REVOKE ALL PRIVILEGES ON api.customer FROM public
GRANT SELECT ON api.customer TO talk_api

http://intrbiz.com

InErbiz
Detecting And Decelving

http://intrbiz.com

Intrbiz
Detecting And Decelving

e \We operate on the assumption we will be hacked

e Therefore detecting that we've been hacked is important
o There are various tools which can help
m IDS/IPS either network or host based
e Got one of them right
m Log analysis systems
e But you're already doing this right

e Honeypots are an interesting option

o Designed to lure in attackers and keep them occupied
m Allows you to detect and observe them
m Keep the occupied and away from the real deal

http://intrbiz.com

Intrbiz
Detecting And Decelving

e What if we can create fake table, which when queried raise the alarm

e PostgreSQL is flexible enough to give us some options
o Using functions and views
o Using a foreign data wrapper

e Both methods have pros and cons

e | figured writing a FDW with Multicorn would be a simple proof of concept
o Couple of hours, 70 odd lines of python
o On select of a table will fire call to Bergamot Monitoring or any HTTP webhook
o On Github: https://github.com/intrbiz/pg_decoy

http://intrbiz.com

https://github.com/intrbiz/pg_decoy

InErbiz
Detecting And Deceiving: pg_decoy Example

CREATE SERVER my_decoy FOREIGN DATA WRAPPER multicorn OPTIONS
wrapper 'PGDecoy.PGDecoyFDW'
driver 'bergamot'

host 'demo.bergamot-monitoring.org'
key 'SSmV5Zxqg54SLS280M3sNFPNaH1QTb'
trap '29792591-9599-44e5-b797-670458141c84"'

http://intrbiz.com

InErbiz
Detecting And Deceiving: pg_decoy Example

CREATE FOREIGN TABLE customers
id UUID
username TEXT
password_hash TEXT
emall TEXT
full name TEXT
pref_name TEXT
mobile TEXT

SERVER my_decoy

OPTIONS
pot 'customer'

http://intrbiz.com

InErbiz
Developer Two Factor Authentication

http://intrbiz.com

InErbiz
Developer Two Factor Authentication

e Developers and especially DBAs usually have a lot of access to the database
o Hands up who has super user access to production

e These accounts are very valuable to attackers
o PostgreSQL’s MD5 auth is pretty bad, move to SCRAM with 10

e Lots of systems are moving towards two factor authentication, what if we
would do that with PostgreSQL?
o Would love to be able to use my Yubikey to authenticate with PostgreSQL

e PostgreSQL supports multiple authentication systems
o We can use RADIUS to delegate the password verification to an external system

http://intrbiz.com

