
http://intrbiz.com

Protecting Your Customers
With PostgreSQL

Chris Ellis - @intrbiz

Practical Ways To Look After Your Data

PG Conf EU 2017

http://intrbiz.com

Hello!

● I’m Chris
○ IT jack of all trades

● Been using PostgreSQL for about 12 years
● Very much into Open Source

○ Start Bergamot Monitoring - open distributed monitoring

● Been working on large smart energy analytics for the last few years
○ Strange mix of OLTP and OLAP
○ Quite a bit of customer data, hence this talk

http://intrbiz.com

Setting The Scene
● This talk has come from the various efforts me and my team have

implemented to protect our customers data, I wanted to share my learnings
● This talk is targeted at people who are building application with PostgreSQL,

rather than running third party application on top of PostgreSQL
● Please don’t see this talk as a: `we should be doing this`. You need to decide

for yourself which approaches work the best for you in your situation.

● I’d prefer this talk to be a discussion and not a lecture, please feel free to ask
questions :)

http://intrbiz.com

Why Bother With This Security Stuff?
● Large scale data loss is increasingly in the headlines

○ Reputational damage cost you
○ Do you want to be the next: Talk Talk, Yahoo, Equifax?

● Legal
○ Obligations under various data protection legislation
○ GDPR comes into force next year, could be fined 5% of revenue!

● Professional
○ You don’t want data loss to follow you around, feels nice to do a good job

● Compliance
○ In a large corp, you don’t want the Info. Sec. team down your throats!
○ You may have to comply with external regulations, eg: PCI DSS

http://intrbiz.com

But Heard It All Before
● We have a firewall

○ Just protecting your perimeter - fail!

● We won’t get hacked, no one cares about us
○ Hackers certainly don’t

● Not a priority now
○ It’ll be a priority when it is too late

● Security is expensive
○ Companies spend about 1/20th of development cost on security

http://intrbiz.com

Security Is An Onion, Not A Balloon
● You will get hacked, plan on that assumption, not the other way around
● Defense In Depth

○ You can’t just protect the perimeter, threats aren’t just external
○ An attacker should need to exploit multiple layers

● Failsafe
○ Each layer should failsafe, contain an attack rather than facilitate it
○ Least privilege: I want the least amount of permission to acheive what I need to do

● Challenge
○ Security is the responsibility of everyone: devs, ops, dbas, business. Not just Info. Sec.

● Detect, Deceive
○ Would you know if you’ve been breached, attacks are often slow and unnoticed
○ All Warfare Is Based On Deception

http://intrbiz.com

Foundations

http://intrbiz.com

Foundations: Standing On The Shoulders Of Giants
● Crunchy Data have done awesome work on securing a PostgreSQL install

○ It’s pointless me repeating it
○ Get it here: http://info.crunchydata.com/blog/postgres-stig-disa-security-guide
○ Read it
○ Implement what is sensible for your deployment

● They’ve also gone great work on pg_audit
○ Again pointless me repeating it

http://info.crunchydata.com/blog/postgres-stig-disa-security-guide

http://intrbiz.com

Foundations: TLSing Connections
● Running in a cloud environment, it’s hard to keep tabs on where traffic will

flow
● Running without TLS between our application and database wasn’t an option

○ Damn info. sec.

● But Debian / Ubuntu has TLS enabled by default
○ Well, yes and no
○ TLS without a chain to trust is pretty pointless

● Doing TLS properly
○ Get a real certificate signed by a real CA
○ Set up your own CA

■ Easily done via OpenSSL

http://intrbiz.com

Foundations: Encrypted Storage?
● In some environments you don’t have control of the storage layer

○ How can you prevent someone copying your whole database
○ How can you demonstrate the destruction of data

■ Easy to prove you shredded those $40k worth of SSDs

● You might need to run your whole database on an encrypted volume
○ On Linux this can be done via dm-crypt
○ Encryption has some overhead, every disk read and write requires additional CPU time

■ Thankfully modern CPUs have dedicated instructions to improve AES performance
○ You might be able to get away with encrypting certain table spaces

■ Be careful of temp files, temp tables, etc
○ There are schema level options, with lots of tradeoffs, out of scope for this talk

http://intrbiz.com

Foundations: Where Is Your Schema?
● You should manage your database schema as you would code

○ Put it in source control
○ Make it visible, reviewable, manageable
○ One SQL file per entity
○ Wrap it in a simple build process: a little bash script, maybe make
○ You can easily do single shot migration scripts using a function, no need for fancy tools
○ Use transactions: make your deployment atomic

● Don’t
○ Only keep your schema in a database

■ Then trying to do pg_dump | psql to patch other dbs
○ Store it as a set of patch scripts

■ Where deploying consists of applying script after script in order

http://intrbiz.com

Building Blocks

http://intrbiz.com

Building Blocks: Roles, The More The Better
● Roles are things which can be given permission over your database

○ Roles could be people, teams, or more abstract
○ Roles in PostgreSQL are super flexible and super powerful for controlling access
○ You can never have enough roles

■ Define roles for each logical group of functionality in your database
■ Aggregate your fine grained roles into higher level roles to simplify maintenance

○ Got multiple applications using your database, each application should have its own role
○ Does your application role have the least privilege it needs?

● Don’t:
○ Your application role is a super user - just no!
○ Your application role is the database owner
○ Your developers are super users - sure, they occasionally need it, but not by default

http://intrbiz.com

Building Blocks: Grant, Revoke
● Once you’ve got roles defined, you want to control what they can do

○ Revoke all permissions from public
■ No point in controlling what roles can do, if public can do everything

○ Grant roles only the access they need
■ Define and manage your roles and grants in your schema repository
■ Only grant usage to schemas that the role needs
■ Only grant the specific permissions that a role needs over a table
■ Start with the minimum, deploying schema updates is easy, databases are in flux

○ If your tables contain sensitive data, you might want to grant access at the column level
■ This will break: SELECT * FROM …

http://intrbiz.com

Building Blocks: Row Level Security
● Row Level Security is very powerful, however didn’t suit our use case

○ Hard to define a separate user for each customer in our system
■ Don’t really want to deal with PostgreSQL with 11M users
■ Had I found out about set_user before, might have been more possible

● Row Level Security still great for enforcing least privilege
○ You can filter certain rows from certain applications
○ You can filter certain rows for types of users in your application

http://intrbiz.com

Functional Interfaces

http://intrbiz.com

Functional Interfaces: What?
● Your database provides an API for your application via functions, rather than

directly querying entities
○ SELECT * FROM get_user_by_username(‘chris’);

● Gives your database developers flexibility, they can change entities without
impacting the application, reduced coupling

● Provides a strict, enforced and controllable interface for what your application
can do with your database. Just like we do at an application API level

● PostgreSQL has many features to provide rich APIs, EG: JSON in and out
● At first it will take more development effort, depends on your team make up, if

you don’t have dedicated database developers it won’t be ideal

http://intrbiz.com

Functional Interfaces: Secure?
● Let’s consider what happens if your application is vulnerable to SQL injection

○ An attacker provides `‘; SELECT * FROM customer; --` as an input
○ The attacker has then managed execute: `SELECT * FROM customer`

■ You’ve just exposed lots of customer data

● If we go via a function instead
○ An attacker provides `‘; SELECT * FROM customer; --` as an input
○ Sadly still the attacker has managed to execute `SELECT * FROM customer`

■ You’ve still exposed lots of customer data

● Using a functional interface will prevent certain attacks
● But it won’t mitigate SQL injection attacks

○ However….

http://intrbiz.com

Functional Interfaces: Security Definer

http://intrbiz.com

Functional Interfaces: Security Definer
● Security definer means your function executes with the permissions of its

owner rather than the permissions of the role executing it
● This provides privilege separation

○ Just like sudo
○ We provide a tight, reviewed and secure interface to lower privileges roles

● Now I can grant the application role only permission to execute the function
● The role which owns the function can be granted access to the underlying

tables
● We fail safe, the application cannot directly access data, it can only do what

the function allows it

http://intrbiz.com

Functional Interfaces: Security Definer Example
CREATE ROLE talk_api_function WITH
 NOSUPERUSER NOCREATEDB NOCREATEROLE NOLOGIN NOREPLICATION
 NOBYPASSRLS;

CREATE ROLE talk_api WITH
 NOSUPERUSER NOCREATEDB NOCREATEROLE NOLOGIN NOREPLICATION
 NOBYPASSRLS;

CREATE USER app_talk WITH
 LOGIN NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;
GRANT talk_api TO app_talk;

http://intrbiz.com

Functional Interfaces: Security Definer Example
CREATE SCHEMA api AUTHORIZATION cellis;
REVOKE ALL PRIVILEGES ON SCHEMA api FROM public;
GRANT USAGE ON SCHEMA api TO talk_api;

CREATE SCHEMA customer AUTHORIZATION cellis;
REVOKE ALL PRIVILEGES ON SCHEMA customer FROM public;
GRANT USAGE ON SCHEMA customer TO talk_api_function;

http://intrbiz.com

Functional Interfaces: Security Definer Example
CREATE TABLE customer.customer (
 id UUID NOT NULL PRIMARY KEY,
 full_name TEXT,
 preferred_name TEXT,
 email_address TEXT,
 mobile_number TEXT,
 postal_address TEXT,
 postcode TEXT
);

ALTER TABLE customer.customer OWNER TO cellis;
REVOKE ALL PRIVILEGES ON TABLE customer.customer FROM public;
GRANT SELECT ON TABLE customer.customer TO talk_api_function;

http://intrbiz.com

Functional Interfaces: Security Definer Example
CREATE OR REPLACE FUNCTION api.get_customer(p_id UUID)
RETURNS SETOF customer.customer
LANGUAGE plpgsql SECURITY DEFINER AS $$
BEGIN

RETURN QUERY SELECT * FROM customer.customer WHERE id = p_id;
END;
$$;
ALTER FUNCTION api.get_customer(UUID) OWNER TO talk_api_function;

REVOKE ALL PRIVILEGES ON
 FUNCTION api.get_customer(UUID) FROM public;

GRANT EXECUTE ON FUNCTION api.get_customer(UUID) TO talk_api;

http://intrbiz.com

Functional Interfaces: Secure?
● Let’s go back to our SQL injection vulnerable application

○ An attacker provides `‘; SELECT * FROM customer; --` as an input
○ The function call is still bypassed, by the injection
○ However the application does not have permission to directly access the table
○ Instead of exposing customer data the attacker gets an error message
○ The data layer has failed safe and contained the attack, rather than facilitated it

● Let’s think about a bigger application vulnerability, imagine the attacker has
gained total control of your application, how might they extract your customer
data

○ The functional interface restricts them to accessing 1 record at a time
○ The attacker needs to guess your identifiers

■ Don’t expose sequential identifiers publicly

http://intrbiz.com

Functional Interfaces: Caveats
● If your security definer functions are generating dynamic SQL, be careful

○ Just like with sudo, if you allow a user to run a user defined command as root, your owned

● Make sure you use:
○ `quote_ident`
○ `quote_literal`
○ `EXECUTE … USING ...`

http://intrbiz.com

Functional Interfaces: PL/Proxy
● If you’ve gone down the functional interface road, then you can leverage

extensions such as PL/Proxy
● PL/Proxy allows you to define functions which proxy to a remote PostgreSQL

database, this is great for sharding and scaling your database
● PL/Proxy also allows you to place another layer between your application and

your actual data
○ The application can only connect to the proxy database, which is stateless, contains no data
○ The proxy database then proxies function calls to the backend database
○ To extract data, an attacker now needs to exploit multiple layers

● For sure, this requires more development effort, you now need to write two
function definitions for everything

http://intrbiz.com

Masking Data: Views
● You can easily use views to hide portions of data

○ Or apply one way transformations (eg: hashing)
○ Revoke privileges from the underlying table
○ Grant permissions to the view

● When using a view to mask data, you need to be careful
○ The view needs to be marked security definer
○ Functions used by the view should be marked leakproof

http://intrbiz.com

Detecting And Deceiving: pg_decoy Example
CREATE OR REPLACE VIEW api.customer
WITH (security_barrier=true)
AS
 SELECT id, full_name, preferred_name, md5(email_address) AS
email_address, md5(mobile_number) AS mobile_number, NULL AS
postal_address, postcode
 FROM customer.customer;

ALTER TABLE api.customer OWNER TO cellis;

REVOKE ALL PRIVILEGES ON api.customer FROM public;
GRANT SELECT ON api.customer TO talk_api;

http://intrbiz.com

Detecting And Deceiving

http://intrbiz.com

Detecting And Deceiving
● We operate on the assumption we will be hacked
● Therefore detecting that we’ve been hacked is important

○ There are various tools which can help
■ IDS/IPS either network or host based

● Got one of them right
■ Log analysis systems

● But you’re already doing this right

● Honeypots are an interesting option
○ Designed to lure in attackers and keep them occupied

■ Allows you to detect and observe them
■ Keep the occupied and away from the real deal

http://intrbiz.com

Detecting And Deceiving
● What if we can create fake table, which when queried raise the alarm
● PostgreSQL is flexible enough to give us some options

○ Using functions and views
○ Using a foreign data wrapper

● Both methods have pros and cons
● I figured writing a FDW with Multicorn would be a simple proof of concept

○ Couple of hours, 70 odd lines of python
○ On select of a table will fire call to Bergamot Monitoring or any HTTP webhook
○ On Github: https://github.com/intrbiz/pg_decoy

https://github.com/intrbiz/pg_decoy

http://intrbiz.com

Detecting And Deceiving: pg_decoy Example
CREATE SERVER my_decoy FOREIGN DATA WRAPPER multicorn OPTIONS (
 wrapper 'PGDecoy.PGDecoyFDW',
 driver 'bergamot',
 host 'demo.bergamot-monitoring.org',
 key 'SSmV5Zxq54SLS280M3sNFPNaHlQTb',
 trap '2979259f-9599-44e5-b797-670458141c84'
);

http://intrbiz.com

Detecting And Deceiving: pg_decoy Example
CREATE FOREIGN TABLE customers (
 id UUID,
 username TEXT,
 password_hash TEXT,
 email TEXT,
 full_name TEXT,
 pref_name TEXT,
 mobile TEXT
)
SERVER my_decoy
OPTIONS (
 pot 'customer'
);

http://intrbiz.com

Developer Two Factor Authentication

http://intrbiz.com

Developer Two Factor Authentication
● Developers and especially DBAs usually have a lot of access to the database

○ Hands up who has super user access to production

● These accounts are very valuable to attackers
○ PostgreSQL’s MD5 auth is pretty bad, move to SCRAM with 10

● Lots of systems are moving towards two factor authentication, what if we
would do that with PostgreSQL?

○ Would love to be able to use my Yubikey to authenticate with PostgreSQL

● PostgreSQL supports multiple authentication systems
○ We can use RADIUS to delegate the password verification to an external system

